MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/23 Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE A LEVEL – October/November 2010	9702	23	
1	(a) allow 0	$.05\text{mm} \rightarrow 0.15\text{mm}$		B1	[1]
	(b) allow 0	$.25 s \rightarrow 0.5 s$		B1	[1]
	(c) allow 8	$3N \rightarrow 12N$		B1	[1]
	ignore	number of significant figures			
2	crystalline:	atoms / ions / particles in a regular arrangement / lattic long range order / orderly pattern (lattice) repeats itself	ce (1)	B1	
	polymer:	long chain molecules / chains of monomers	(')	B1	
		some cross-linking between chains / tangled chains disordered arrangement of molecules / atoms / particle		B1	
	(three 'B' m	any ordering is short-range arks plus any other 2 marks)	(1)	B2	[5]
3	adjust c.r.o. measure le frequency	crophone / (terminals of) loudspeaker to Y-plates of c.r.c to produce steady wave of 1 (or 2) cycles / wavelength ngth of cycle / wavelength λ and note time-base <i>b</i> = 1 / λb is measured as s cm ⁻¹ , unless otherwise stated)		B1 B1 M1 A1	[4]
	(if statemer	It is 'measure T, f = $1/T$ then last two marks are lost)			
4	(a) accepta	able straight line drawn (touching every point)		B1	[1]
	· · ·	ance fallen is not <i>d</i> distance fallen plus the diameter of the ball		C1 A1	[2]
	('d is n				
		meter: allow 1.5 ± 0.5 cm (accept one SF) ecf from (a)		A1	[1]
	gra	adient = 4.76, \pm 0.1 with evidence that origin has not been adient = $g/2$ = 9.5 m s ⁻²	en used	C1 C1 A1	[3]

Page 3		e 3		Mark Scheme: Teachers' version		Syllabus	Paper		
				GCE A LEVEL – October/November 2010 9702		23			
5	(a)	(i)	Fig.	5.2				B1	[1]
	(ii)	Fig.	5.3				B1	[1]
	(b)	kine	etic er	ergy increase	es from zero then d	ecreases to zero		B1	[1]
	(c)	(i)	ΔE_{P}	$= mg\Delta h / m$ = 94 × 10 ⁻³	gh × 9 8 × 2 6 × 10 ⁻²	using $g = 10$ then -2	1	C1	
				$= 0.024 \mathrm{J}$	2.0 4 10		•	A1	[2]
	(ii)	eithe	$r 0.024 = \frac{1}{2} \\ 0.012 = \frac{1}{2} \\ d = 0.0$		$\frac{1}{2} kd^2 = \frac{1}{2}k \times (2.6)kd^2 = \frac{1}{2}k \times (2.6)d^2 = \frac{1}{2}k \times (2.6)d^2 = 0.018 m$	$ \begin{array}{l} \times \ 10^{-2})^2 \ - \frac{1}{2}kd^2 \\ \times \ 10^{-2})^2 \end{array} $	C1 C1	
				= 1.8		= 1.8 cm		A1	[3]
6	• •			· /	aves meet (at a poin nt is (vector) sum o	nt) f individual displacem	nents	B1 B1	[2]
	(b) ((i)	590		formula given and s × 10 ⁻³ × <i>x</i>) / 2.6	substitution is incorred	ct then 0/3)	C1 C1 A1	[3]
	(ii)	1 . 18	80° (allow π if	rad stated)			A1	[1]
			in		$plitude^2$ allow $I \sim$	s and at minimum, 0.6 a ²	3 units	C1 C1	
				32 32	0			A1	[3]
7	(a)	(i)	path		curve upwards betv at a tangent to the	veen plates curve beyond the pla	tes	B1 B1	[2]
	(ii)	1. (F	=) <i>E.g</i>				B1	[1]
			2 . (<i>t</i>	=) L / v				B1	[1]
	(b)	(i)	syste prov	m before a c ded no exteri	ollision equals total nal force acts on the	constant or total mor momentum after coll e system vise correct statemen	ision	M1 A1	[2]
	(ii)	(∆ p :	⊧) <i>EqL / v</i> al	low ecf from (a)(ii)			B1	[1]
	(i	ii)	eithe or	so law do system is	particle is not an isones not apply particle and 'plates particle and 'plates dopposite Δp on plates	-		M1 A1 (M1) (A1)	

GCE A LEVEL - October/November 2010 9702 23 8 (a) (i) either $P = V^2 / R$ or $I = 1200 / 230$ or 5.22 $R = (230 \times 230) / 1200$ $R = 230^2 / 1200$ or $R = 230 / 5.22$ $= 44.1 \Omega$ C1 (ii) $R = \rho L / A$ $= (1.7 \times 10^{-8} \times 9.2 \times 2) / (\pi \times \{0.45 \times 10^{-3}\}^2)$ $= 0.492 \Omega$ C1 (b) current = 230 / 44.6 power = (230 / 44.6)^2 \times 44.1 C1	[2]
$R = (230 \times 230) / 1200$ $R = 230^{2} / 1200 \text{or} R = 230 / 5.22 \text{M}^{2}$ $= 44.1 \Omega = 44.1 \Omega \text{A0}$ (ii) $R = \rho L / A \text{C1}$ $= (1.7 \times 10^{-8} \times 9.2 \times 2) / (\pi \times \{0.45 \times 10^{-3}\}^{2}) \text{M}^{2}$ $= 0.492 \Omega \text{A0}$ (b) current = 230 / 44.6 C1	
$R = 230^{2} / 1200 \text{or} R = 230 / 5.22 \qquad \text{M}^{2}$ $= 44.1 \Omega \qquad = 44.1 \Omega \qquad \text{A0}$ (ii) $R = \rho L / A \qquad \qquad \text{C1}$ $= (1.7 \times 10^{-8} \times 9.2 \times 2) / (\pi \times \{0.45 \times 10^{-3}\}^{2}) \qquad \qquad \text{M}^{2}$ $= 0.492 \Omega \qquad \qquad \text{A0}$ (b) current = 230 / 44.6 C1	
(ii) $R = \rho L / A$ = $(1.7 \times 10^{-8} \times 9.2 \times 2) / (\pi \times \{0.45 \times 10^{-3}\}^2)$ = 0.492Ω (b) current = 230 /44.6	
$= (1.7 \times 10^{-8} \times 9.2 \times 2) / (\pi \times \{0.45 \times 10^{-3}\}^2)$ $= 0.492 \Omega$ (b) current = 230 /44.6 C1	[2]
$= 0.492 \Omega$ A0 (b) current = 230 /44.6 C1	[2]
(b) current = 230 /44.6 C1	[2]
$r = (230/44.6)^2 \times 44.1$	
	101
= 1170W A1 (allow full credit for solution based on potential divider)	[3]
(c) e.g. less power dissipated in the heater / smaller p.d. across heater /	
more power loss in cable / current lower B1 cable becomes heated / melts B1	[2]
(any two sensible suggestions, 1 each, max 2)	[2]
9 (a) <u>nucleus</u> emits α -particles or β -particles and/or γ -radiation B1	
to form a different / more stable nucleus B1	[2]
(b) (i) fluctuations in count rate (not 'count rate is not constant') B1	[1]
(ii) no effect B1	[1]
(iii) if the source is an α -emitter B1	
<i>either</i> α-particles stopped within source (and gain electrons) <i>or</i> α-particles are helium <u>nuclei</u> B1	[2]
α -particles are field in <u>indule</u>	[4]

allow 1/2 for 'parent nucleus gives off radiation to form daughter nucleus'