MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2013	9702	22	
1	(a) pov	wer = = =	energy / time (force × distance / time) = kg m ² s ⁻² / s kg m ² s ⁻³		C1 C1 A1	[3]
	(b) (i)	units (C =	s of L^2 : m ² and units of ρ : kg m ⁻³ and units of v ³ : m ³ $P/L^2 \rho v^3$) hence units of C: kg m ² s ⁻³ m ⁻² kg ⁻¹ m ³	s^{-3} $n^{-3} s^{3}$	C1	
		or al argu	ny correct statement of component units Iment /discussion / cancelling leading to C having n	o units	M1 A1	[3]
	(ii)	pow v ³ = v = 9	er available from wind = 3.5 × 10 ⁵ × 100 / 55 (= 6.36 3.5 × 10 ⁵ × 100 / (55 × 0.931 × (25) ² × 1.3) 9.4 m s ⁻¹	6 × 10⁵)	C1 C1 A1	[3]
	(iii)	not a	not all kinetic energy of wind converted to kinetic energy of blades		B1	
		prod (the	luced in generator / bearings etc re must be cause of loss and where located)		B1	[2]
2	(a) for	ce = ra	ate of change of momentum		A1	[1]
	(b) (i)	horiz horiz verti horiz	zontal line on graph from $t = 0$ to t about 2.0 s ± ½ s zontal line at 3.5 on graph from 0 to 2 s cal line at $t = 2.0$ s to $a = 0$ or sharp step without a li zontal line from $t = 2$ s to $t = 4$ s with $a = 0$	quare, <i>a</i> > 0 ne	M1 A1 B1 B1	[4]
	(ii)	strai start finis horiz from	ght line and positive gradient ing at (0,0) hing at (2,16.8) zontal line from 16.8 2.0 to 4.0		M1 A1 M1 A1	[5]
3	(a) the is c	point consid	where (all) the weight (of the body) ered / seems to act		M1 A1	[2]
	(b) (i)	verti	cal component of T (= $30 \cos 40^\circ$) = 23 N		A1	[1]
	(ii)	the <u>s</u> antic	<u>sum</u> of the clockwise moments about a <u>point</u> equals clockwise moments (about the same point)	the <u>sum</u> of the	B1	[1]
	(iii)	(moi worł	ments about A): 23 × 1.2 (27.58) = 8.5 × 0.60 + 1.2 × W king to show W = 19 or answer of 18.73 (N)		M1 M1 A1	[3]
	(iv)	(<i>M</i> =	<i>W g</i> = 18.73 / 9.81 =) 1.9(09) kg		A1	[1]

	Page 3			Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2013	9702	22	
	(c)	(for upv not	(for equilibrium) resultant force (and moment) = 0 upward force does not equal downward force / horizontal component of T not balanced by forces shown		B1 B1	[2]	
4	(a)	app dia(oaratu gram	s: cell with particles e.g. smoke (container must be showing suitable arrangement with light illuminatior	closed) and microscope	B1 B1	[2]
	(b)	spe in ra	cks / andor	flashes of light n motion		M1 A1	[2]
	(c)	 cannot see what is causing smoke to move hence molecules smaller than smoke particles 					
		continuous motion of smoke particles implies continuous motion of molecules				(B1)	
		random motion of particles implies random motion of molecules			(B1)		
						max. 2	[2]
5	(a)	(i)	v = t $\lambda =$	λ 40 / 50 = 0.8(0) m		C1 A1	[2]
		(ii)	wave incid	es (travel along string and) reflect at Q / wall / fixed lent and reflected waves interfere / superpose	end	B1 B1	[2]
	(b)	(i)	node antir	es labelled at P, Q and the two points at zero displa nodes labelled at the three points of maximum displa	cement acement	B1 B1	[2]
		(ii)	(1.5,	λ for PQ hence PQ = 0.8 × 1.5) = 1.2 m		A1	[1]
	((iii)	T = ⁻ 5 ms horiz	1 / f = 1/50 = 20 ms s is ¼ of cycle zontal line through PQ drawn on Fig. 5.2		C1 A1 B1	[3]
6	(a)	cha	rge =	current × time		B1	[1]
	(b)	(i)	P = =	V^2 / R (240) ² / 18 = 3200 W		C1 A1	[2]
		(ii)	I = \	// <i>R</i> = 240 / 18 = 13.3 A		A1	[1]
	((iii)	char	ge = It = 13.3 × 2.6 × 10 ⁶ = 3.47 × 10 ⁷ C		C1 A1	[2]
	((iv)	num num	ber of electrons = $3.47 \times 10^7 / 1.6 \times 10^{-19}$ (= 2.17 × ber of electrons per second = 2.17 × $10^{26} / 2.6 \times 10^{26}$	10 ²⁶) ⁶ = 8.35 × 10 ¹⁹	C1 A1	[2]

	Page 4	Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2013	9702	22	
7	(a) (i) l	N = 206 and X = 82 Y = 4 and Z = 2		A1 A1	[2]
	(ii) r r	nass-energy is conserved nass on rhs is less because energy is released		B1 B1	[2]
	(b) not a or two	ffected by external conditions/factors/environment o examples temperature and pressure		B1	[1]